
Mem. S.A.It. Vol. 88, 154
c© SAIt 2017 Memorie della

Radioastronomic signal processing cores for the
SKA radio telescope

G. Comoretto, S. Chiarucci, and C. Belli

Istituto Nazionale di Astrofisica – Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-
50125 Firenze, Italy, e-mail: comore@arcetri.astro.it

Abstract. Modern radio telescopes require the processing of wideband signals, with sample
rates from tens of MHz to tens of GHz, and are composed from hundreds up to a million of
individual antennas. Digital signal processing of these signals include digital receivers (the dig-
ital equivalent of the heterodyne receiver), beamformers, channelizers, spectrometers. FPGAs
present the advantage of providing a relatively low power consumption, relative to GPUs or
dedicated computers, a wide signal data path, and high interconnectivity.
Efficient algorithms have been developed for these applications. Here we will review some of
the signal processing cores developed for the SKA telescope.
The LFAA beamformer/channelizer architecture is based on an oversampling channelizer,
where the channelizer output sampling rate and channel spacing can be set independently. This
is useful where an overlap between adjacent channels is required to provide an uniform spectral
coverage. The architecture allows for an efficient and distributed channelization scheme, with
a final resolution corresponding to a million of spectral channels, minimum leakage and high
out-of-band rejection. An optimized filter design procedure is used to provide an equiripple
response with a very large number of spectral channels.
A wideband digital receiver has been designed in order to select the processed bandwidth of the
SKA Mid receiver. The receiver extracts a 2.5 MHz bandwidth form a 14 GHz input bandwidth.
The design allows for non-integer ratios between the input and output sampling rates, with a
resource usage comparable to that of a conventional decimating digital receiver.
Finally, some considerations on quantization of radioastronomic signals are presented. Due to
the stochastic nature of the signal, quantization using few data bits is possible. Good accuracies
and dynamic range are possible even with 2-3 bits, but the nonlinearity in the correlation pro-
cess must be corrected in post-processing. With at least 6 bits it is possible to have a very linear
response of the instrument, with nonlinear terms below 80 dB, providing the signal amplitude
is kept within bounds.

Key words. Signal processing – Radioastronomy – Square Kilometre Array

1. Introduction

Data processing in modern radio telescopes
is increasingly performed using digital tech-
niques. The astronomic radio signal is con-
verted to a digital form often just after the am-

plification, without a frequency conversion that
is performed digitally. Whenever this is not
possible, the analogic signal processing chain
includes only a single frequency conversion, to
adapt the signal bandwidth to that of available
high speed ADCs.



Comoretto: Signal processing for SKA 155

The processing system must therefore be
able to deal with very large input sampling
rates, up to several tens of GHz, and with a
large number of input signals. As large tele-
scopes are typically located in remote sites,
power generation is also a concern, and power
saving architectures must necessarily be used.

Data processing is composed of a set of
relatively standard operations, like frequency
translation, filtering, frequency channelization,
and beamforming, usually in a fixed configura-
tion. The computation chain is thus relatively
simple, but requires a large number of opera-
tions. For example the down-conversion of a
signal requires about 20 operations per sam-
ple, or 200 Gop/s for a signal sampled at 10
gigasample per second. Interferometric instru-
ments are particularly demanding, as the sig-
nal from each antenna must be correlated with
all the other ones. An interferometer with hun-
dreds of antennas may require computing ca-
pabilities of the order of several hundreds of
peta-op/s.

For all these considerations systems based
on custom or programmable logic are fa-
vored. Systems based on commercial comput-
ers, although very flexible, present excessive
power consumption, and GPU based solutions
are advantageous only when complex algo-
rithms are required, like for example pulsar
search surveys. Field programmable logic ar-
rays (FPGAs) are currently the preferred pro-
cessing engines, as they use relatively low
power, have a high granularity well suited for
massive parallel processing, and have dedi-
cated circuitry for a large number of high
speed interconnection links. FPGAs, unlike
dedicated logic (ASIC), can be used in general
purpose processing boards not linked to a spe-
cific application, and can be reprogrammed to
correct for errors or to add new functionalities
to an existing instrument.

The Square Kilometre Array is a large in-
terferometer, with a final collecting area of the
order of one million square meters, spanning
the frequency range of 50 MHz to 14 GHz. In
the initial phase it will be composed of two in-
struments, for about 1/20 of the final collect-
ing area. SKA Low is composed of 131,072 log
periodic antennas in the frequency range from

50 to 350 MHz, and will be built in Australia,
while SKA Mid, composed of 192 dishes in the
frequency range between 0,7 and 14 GHz, will
be built in South Africa. A third instrument, al-
ready built in the same Australian site, is com-
posed of 16 antennas, each equipped with a
phased array feed, i.e. a plane of about 200 in-
dividual antennas that are digitally combined
in order to produce a focal plane radio imaging
detector. In all these cases the digital process-
ing system, due to the high number of input
signals, their large bandwidth or both, must be
able to analyze tens to hundreds of terasamples
per second.

For this telescope we developed a set of
functional blocks organized as a general pur-
pose library. The library has been developed
trying to maximize the generality and re-
usability of the functional blocks, as described
in section 2. In part this library reuses gen-
eral purpose blocks developed in the Radionet
Uniboard FP7 program.

Some of these modules are described in de-
tail: a polyphase oversampling channelizer, in
section 3.1 and a beamformer, in section 3.2,
for the Low telescope, and a down-conversion
module, in section 4, for the Mid telescope. A
general analysis about the quantization effects
on the linearity of the data processing is briefly
outlined in section 5.

2. FPGA firmware development
strategy

As these signal processing operations are rela-
tively common, several libraries, both commer-
cial and developed by the astronomic commu-
nity, currently exist. In particular we examined:

– Proprietary graphic generation tools. These
are provided by the FPGA vendors, and
include a rich set of basic functional
blocks that can be used to generate a high
level processing unit as a Simulink model.
The tool then automatically translates this
model to the code used to actually pro-
gram the FPGA. These tools are however
not very efficient, using typically 20–50%
more FPGA resources with respect to di-
rect coding. They are also bound to a spe-



156 Comoretto: Signal processing for SKA

cific FPGA vendor, and it is not possible to
migrate the design to a different vendor.

– The Casper project. This is a wide effort,
carried on by a consortium of several ra-
dioastronomic institutes, to develop both a
set of hardware platforms and a library of
high level building blocks, with the typi-
cal functionalities required in a radioastro-
nomic instrument. It is built above the pro-
prietary Xilinx graphic development tool,
and is thus bound to FPGAs from this ven-
dor. Board development is a slow process,
and boards are typically 2-4 years behind
the current state of the art. Casper boards
have been used in the Italian radio tele-
scopes (Bartolini 2016).

– OpenCL, is a C-like language, originally
developed for programming GPU boards.
Altera has provided a version of the lan-
guage for their FPGAs. It however requires
a specific board support package for each
board, and the FPGA must have some form
of local intelligence, and/or a direct link to
a host computer. It is also very specific to
the Altera vendor.

Considering the limitations of these tools,
in particular the difficulties in transferring a
design to a different vendor, we chose to de-
scribe the modules in the VHDL hardware de-
scription language. This general purpose lan-
guage allows to describe the processing in a
way that is relatively similar to a standard pro-
gramming language. Aspects like signal map-
ping, timing, etc. must be explicitly coded, and
this makes the language difficult to use. It is
in general not possible to code without at least
some knowledge of the underlying physical
structure, but there are consolidated program-
ming techniques that allow at least some level
of abstraction.

To facilitate high level design we adopted
a general coding template for each module
with a standard external interface. Modules are
linked together in a very simple, and standard-
ized structure, to build the data processing ap-
plication. We used the AXI4 standard, devel-
oped by the ARM consortium, both for signals,
represented as AXI4 streaming interfaces, and

for the control system, with each module im-
plementing an AXI4-lite slave.

The FPGA contains only minimal local in-
telligence, or nothing at all. The modules com-
posing the processing chain are remotely pro-
grammed using a AXI4-over-Ethernet inter-
face, implemented either as a state machine
or as a simple (and fixed) program in a syn-
thesized microcontroller. The remote master
sends commands, setting and reading registers
inside the FPGA, as UDP packets. The proto-
col guarantees that each packet has been cor-
rectly received, both for the commands to the
FPGA and for the responses to the master. The
AXI4 slave interface is automatically gener-
ated from a register description in an XML file.

The top level code for each module con-
tains this interface and the custom functional
core, that has a more specific, but interface
independent, port structure. Adapting a mod-
ule to a different interface is thus relatively
easy. In fact several modules were imported
from a similar library, developed as part of the
Uniboard Joint Research Activity of the FP7
Radionet project, by just changing the inter-
face layer that, in the Uniboard, is based on the
Avalon bus.

Modules do not assume a particular FPGA
family. Any vendor dependence is dealt by en-
capsulating the relevant low level function in
a vendor agnostic module. By linking the li-
brary containing the correct low level files it is
possible to port the module to a different ven-
dor/family.

Modules are heavily parametrized, in order
to be reused in different situations. For exam-
ple parameters for the channelizer module in-
clude the input and output data width, the num-
ber of channels and the time multiplexing of
the input signal.

As an example, we were able to port a spec-
trometer design (Comoretto et al. 2006), ini-
tially developed for one specific Altera board,
to a Xilinx based system (Comoretto, Melis
2010), without changing the relevant VHDL
code.

To aid the module design we used exten-
sively the SysML system description language
(Belli 2016).



Comoretto: Signal processing for SKA 157

3. The SKA Low station processing
system

The SKA Low telescope is composed of
131,072 individual cross dipole, log periodic
antennas, sensitive to radio waves from most
of the sky. Antennas are grouped into stations
of 256 elements each. Each station is equiva-
lent to a dish with a physical diameter of 35 m,
with a receiver bandwidth spanning from 50 to
350 MHz.

The conceptual data processing chain is
shown in figure 1. Signal from each antenna
is channelized into channels about 0.8 MHz
wide. Then 256 antennas are aligned together
by applying a time varying phase to each chan-
nel and summed together to form a station sig-
nal.

The resulting signals are further channel-
ized to a final frequency resolution of up to
400 Hz, and corresponding channels from each
possible pair of the 512 stations are correlated
to produce ≈ 128 K (frequency dependent) vis-
ibilities. These in turn are integrated, Fourier
transformed and deconvolved to produce a sky
image.

Processing up to the formation of station
signals is performed in a distributed proces-
sor composed of 8192 board with two Kintex
Ultrascale FPGAs each. This tile processing
board (TPM) has been developed by Sanitas
srl, in collaboration with the Italian SKA
group, and is described elsewhere in this work-
shop.

Signals from the stations are combined into
visibilities in a central signal processor (CSP),
also based on Xilinx FPGAs. Visibilities are
converted into images in a cluster of conven-
tional processors, the Science Data Processor
(SDP). All the elements in the system are inter-
connected by a dedicated high speed Ethernet
network (currently 40 Gbps, 100 Gbps in the fi-
nal version), using SPEAD, a standard radioas-
tronomic UDP-based data protocol (Manley et
al. 2010).

The Arcetri group has been involved in the
design of the whole station data processing
chain. The block structure for this firmware is
described in figure 2. The blocks for the 40
Gb Ethernet, the ADC JESD204 and the exter-

nal DDR memory interfaces are standard com-
mercial modules. The UDP formatter and the
monitor and control subsystems have been de-
signed by the UK SKA group. The remaining
modules have been developed by the Arcetri
group. These modules are quite general, and
can be adapted for other instruments.

The firmware is implemented into two
Kintex Ultrascale FPGAs. Each FPGA pro-
cesses the signals from 8 antennas, 2 polariza-
tions, up to the channelization and beamform-
ing. Then the signals from all 16 antennas is
combined together, with each FPGA process-
ing half the total bandwidth. 16 TPM boards
are daisy chained using a standard network
switch to produce a single signal from 256 an-
tennas, that is then sent to the tile processing
module.

The main blocks, described in more detail
below, are the channelizer and the beamformer.
Other blocks are used for calibration and diag-
nostic functions:

– A test signal generator, that allows to test
the signal processing chain using a pseudo-
random Gaussian noise generator and up to
two sinusoidal tones.

– A integrating cross spectrometer, that can
produce the power spectrum of all signals,
and the cross-correlation of two signals,
with the frequency resolution given by the
channelizer

– A data capture module, used to send to the
SKA calibration subsystem samples from
all antennas, one spectral channel in a pre-
defined time interval.

3.1. The polyphase filterbank

The frequency resolution required for SKA is
very high, of the order of 106 channels in the
zoom mode. Frequency channelization is per-
formed using FFT based algorithms, that are
limited to a few thousand points in FPGAs
without resorting to large external memory.
The channelization is then performed into 2
steps, of ≈ 103 points each.

To control the channel shape, the Fourier
transform is preceded by a particular form of a
finite impulse response filter, in the so called



158 Comoretto: Signal processing for SKA

ReceiverAmplifier Beamforming

Frequency resolution

Angular resolution 90 deg 2−10 deg 0.2−2 arcsec

300 MHz 0.8 MHz 0.4−4 kHz

Channelization
(coarse)

Channelization
(fine)

Correlation
and mapping

Fig. 1. Processing in the SKA Low telescope. At each stage either the spectral or the spatial resolution is
increased. The final product is a three dimensional map, with the frequency on the third axis. Four maps are
actually produced, containing also the full polarization information

JESD if

JESD if

Polyphase
channelizer

DDR external
memory banks

Tile
beam

former

Station
adder

40GbE40 GbE
MACUDP/IP

formatter

SPEAD/

& transient buffer
Corner turner 

0

1

15
JESD if

align
Re

Total
power Integration

memory
Cross
spect.

8 identical units

Test
signal
gen.

1GbE

IF

Monitor
&Control

Fig. 2. Firmware for the Tile Processing Module

polyphase filterbank (PFB) architecture de-
scribed e.g. in Harris et al. (2003). This allows
to obtain a very flat passband, and a high re-
jection of unwanted signals (Radio frequency
interferences, RFI). This is particularly impor-
tant, as most of the input power seen by each
antenna is represented by anthropogenic radio
emissions that must be effectively excised.

At the edges of each band the filter must
necessarily have a finite transition region, that
cannot be processed, due to aliasing, if the
channel separation is equal to the channelizer
output sampling rate. The currently available
PFB implementations, however, have this lim-
itation, resulting in holes in the final frequency
coverage.

For SKA a complete frequency coverage
is essential for wideband spectral surveys. A
modified PFB version has then be developed,
in which the output sampling frequency and
the channel separation can be set indepen-
dently. This is done by rewinding by a small
factor the input data stream between Fourier
transforms, producing an oversample of the
output channels.

The module has also been optimized for
real valued, time multiplexed data. Due to lim-
itations of the FPGA speed, the input signal,
sampled at 800 MSps, is multiplexed into 4
parallel streams at 200 MSps. The PFB core
then operates on this representation. Increasing
the time multiplexing, up to a factor of 32, it is
possible to process signals with a bandwidth of



Comoretto: Signal processing for SKA 159

up to 4 GHz. The block diagram of the time
multiplexed, oversampling filter is shown in
figure 3.

The main FFT block uses a proprietary
radix-4 FFT core, that processes in parallel 4
complex, or 8 real signals. In our case one FFT
block processes the two polarizations for one
antenna. The design is optimized to minimize
memory usage, and the maximum operating
frequency exceeds 1 Msample/s for the version
adopted in the SKA channelizer.

The filter element of a polyphase filter-
bank is the most resource intensive part of the
whole system. Minimizing filter length is thus
essential. Minimal filter length is usually at-
tained with equiripple design. Equiripple algo-
rithms (e.g. the Remez-McKellan one), how-
ever, fail to converge for filters with more than
a few hundred elements. In our case the fil-
ter length is of the order of 104 elements, and
the usual approach in these cases is to con-
volve of a sin(x)/x function with an appropri-
ate windowing function. This produces filters
with very high stop-band, exceeding what is
actually needed, at the expense of a increased
filter length. We adopted the approach of de-
signing a filter for a smaller channelizer, using
the Remez-McKellan algorithm, and interpo-
lating the result to the final required resolution
(Comoretto 2012).

In this way we obtained the filter response
in fig. 4. The in-band ripple is ±0.2 dB, the
stop-band is initially 60 dB and increases to
85 dB after a few spectral channels. The fil-
ter order is 14 times the FFT length. For com-
parison, filters with the same performances de-
signed using traditional algorithms have an or-
der of at least 18 times the FFT length.

3.2. Station beamformer

A beamformer produces an equivalent tele-
scope by aligning the 256 antenna signals in
each station for a specific direction in the sky.
The alignment is done with respect to a com-
mon position for each station, while the align-
ment between different stations is performed in
the correlator.

This alignment can be performed in the fre-
quency domain by applying a phase correc-

tion to each frequency channel, φ = − fcτ,
with fc the channel center frequency and τ
the geometric delay. τ varies with time and,
due to the large number of individual anten-
nas, the SKA beamformer must be able to au-
tonomously track it for at least several seconds.

The SKA Low telescope must be able to
produce multiple beams, with a constrained to-
tal bandwidth, for example to perform accu-
rate pulsar timing by simultaneously observe
several pulsars scattered across the sky. Each
beam corresponds to an independent frequency
region, that can be the same for all beam, par-
tially overlapping or completely different.

Therefore, even if the processing is rela-
tively simple, the SKA beamformer is a rel-
atively complex module. It is described in
greater detail in Comoretto (2015).

The module block diagram is shown in fig-
ure 5. The channelized frame (i.e. samples for
all frequency channels at the same time) is
stored in a memory. A structure composed of
a set of tables extract from memory the fre-
quency channels corresponding to the individ-
ual beams, for up to 8 beams. For each beam
and antenna a delay processor computes the
geometric delay, using a linear approximation
of its time variation. The delay is then multi-
plied by the channel frequency and the result-
ing phase converted to a complex phasor using
a lookup table. The table is stored only for the
first quadrant, to save memory resources.

4. Digital baseband converter

It is often necessary to select a portion of the
radio telescope input bandwidth, down-convert
it to a band starting near zero frequency (usu-
ally called baseband), in order to process it
with a smaller bandwidth (and sampling rate,
for a digital signal). This function can be per-
formed in a digital system by a digital base-
band converter (DBBC).

The conceptual schematics of a digital
baseband converter is shown in figure 6. The
input signal is multiplied by a complex expo-
nential, and low-pass filtered using a complex
finite impulse response filter. The result is dec-
imated by an integer ratio, equal to the desired



160 Comoretto: Signal processing for SKA

Adder

CoefCoef Coef

Out
data

memorymemorymemory

domain

SOF cross

multiplexer

Input

input

addr
Write Read

addr

delay1

Out
SOF

delay2

Addr
gen

delay2

Addr
gen

delay2

Addr
gen

y1,y5,...

y0,y4,

y2,y6,...

y3,y7,...x3,x7,...

Syncronous
Sampler clock

Asyncronous > Fs*Os
Processing clock

taps 0,4,8,...taps 2N+(0,4,8,...)

taps 1,5,9,...

taps 2,6,10,...

taps 3,7,11,...

x2,x6,...

x1,x5,...

x0,x4,...

Fig. 3. Polyphase filter for an oversampling, time multiplexed filterbank

final band. If the result must be real valued,
it is up-shifted by 1/2 of the band, and the
real/imaginary components are interleaved to
double the effective sampling rate.

A component that implements this archi-
tecture has been developed, and used for ex-
ample in the spectropolarimeter for the SRT
multibeam receiver (Comoretto et al. 2006).
The decimating low pass filter can provide a
decimation factor from 1/2 to 1/256, in binary
steps. The filter uses a fixed number of multi-
pliers, exploiting the longer time between sam-
ples to increase the filter order, obtaining the
same fractional passband at all decimations.

A more sophisticated filter is required for
the SKA band 5 Mid receiver. This receiver
is used to select a band of 2.5 GHz, sampled
at 5.5 GS/s, from a digitized band of 14 GHz,
sampled at 30 GS/s. When the input bandwidth
is very high the signal is heavily parallelized,
with at least 64 samples for each FPGA clock
cycle for this particular signal. In this case a
multi-stage architecture allows to reduce the
sampling frequency at an early stage, using a

very simple filter. A more sophisticate filter op-
erating at the reduced frequency determines the
final, high performance, bandwidth. The deci-
mation factor that is required for this filter, with
an output sampling frequency of 5.5 GS/s, is
11/60, i.e it is not integer. In this case the low
pass filter must also act as an interpolator.

The filter structure is shown in figure 7, and
the signal processing is described in figure 8.

The first filter has a complex impulse re-
sponse, selecting a portion of the input band-
width that includes the desired region. The fil-
ter is very short (40 taps), allowing to save
computing resources at this very high sample
rate, with a transition region equal to the pass-
band. The decimation process translates the se-
lected band to baseband, but with a frequency
rotation, that is corrected by multiplying the
signal by a complex local oscillator.

A final filter, with real impulse response, is
used for the final band selection and for the in-
terpolation. The interpolation is performed by
implementing several filters, with the correct
response for each possible interpolating value.



Comoretto: Signal processing for SKA 161

0 50 100 150 200 250 300 350 400 450 500
−100

−90

−80

−70

−60

−50
Transfer Function of the Prototype Filter − Stopband

0 0.5 1 1.5

−60

−40

−20

0

Channel shape

 

 
Direct
Aliased

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−0.2

−0.1

0

0.1

0.2

0.3
Passband ripple

Fig. 4. Filter response for the SKA Low polyphase filterbank. Top: Response over the whole input band.
Middle: Zoom over one channel, with direct and aliased response. Low: Passband ripple. Horizontal scale
in spectral channels

+

exp
table

exp
table

Addr
counter

Addr
counter

Region
index
table

table

Antenna
delay

Region

table
beam

address
table

Region

Write addr

+
Frequency

1

read
addr

address
mangling

memory
Dual bank

Phase

0,2,4,...(N−2)

1,3,5,...(N−1)

SOP,
Valid

Even chans

Odd chans

idx

Delay

Channelized
frame

Fig. 5. SKA Low station beamformer

H1

H1

Fs0

B0
cmplx

to
real B1

Fs1

Fig. 6. Standard architecture of a digital baseband converter



162 Comoretto: Signal processing for SKA

H1 cos wt H2

H2H1 sin wt

Fig. 7. Structure of a two-stage digital baseband converter. The signal is filtered using a tuned low pass
filter H1, decimated, frequency rotated and further filtered by a second low pass filter H2

Fs2

Input band

0

Fs0/2

Fs0/2

Fs1

Filtered band

Fs1

Fs1Fs2 Fs2

Resampled band

Frequency rotation 2nd filter to real

Fig. 8. Signal processing in a two-stage digital baseband converter

Since only one filter is used at each given time,
the correct filter is selected simply by choos-
ing the right tap coefficient values, stored in a
single memory. To reduce the number of mul-
tipliers, the filter uses the clock cycles between
two output samples to compute both parts of
the current and the next sample. For example
in this case only 11 every 15 clock cycles pro-
duce an output sample, but the filter uses also
the 4 remaining cycles to begin the computa-
tion of the next samples.

5. Quantization of radio signals

The radio signal is a stochastic noise, with a
Gaussian statistics. The observable is always
the product of two signals (or of the signal with
itself), i.e. the correlation product of two sig-
nals. The two signals can be described using
a normal bivariate distribution, characterized
only by the covariance matrix, or by the two

RMS amplitudes, σ1, σ2 and the cross correla-
tion coefficient ρ.

The statistic nature of the signal allows a
very drastic quantization, even with just one
bit (the signal sign) without a large sensitiv-
ity loss. Using a signal representation with 3
or 4 bits, the sensitivity loss is 3.7% and 1.2%
respectively.

Data processing is performed on these sig-
nals using a larger integer representation, but
the result is re-quantized to typically 8-12 bits,
due to the limited bandwidth of the intercon-
nection network.

While the sensitivity loss is small, a more
serious issue is the linearity of the process.
With proper linearization of the correlation
product, extremely high dynamic ranges can
be achieved, in excess of 100 dB, even using a
small number of bits. But in presence of inter-
fering, non stochastic signals, or when the lin-
earization cannot be performed correctly (e.g.



Comoretto: Signal processing for SKA 163

on the intermediate quantizations), quantiza-
tion linearities may reduce the dynamic range
of the final image. The linearization is also
very computing intensive, especially if it must
be performed on millions of individual visibil-
ities calculated every few seconds. Time vari-
able RFI also poses a problem of dynamic
range, especially when the RFI signal can be
much stronger than the radioastronomic one. In
this case the quantization process must remain
linear over a large range of the signal level, i.e.
with and without the RFI.

Using a Taylor expansion of the bivariate
distribution, and following in detail the quan-
tization and correlation process, we derived
an expression for the first nonlinear term in
the quantized correlation product for an arbi-
trary number of quantization bits and input sig-
nal level. The detailed analysis is reported in
Chiarucci and Comoretto (2015).

The main results are:

– When the two signals being correlated are
different, the linearity remains very large
(more than 60 dB) if at least 4 bits are used
in representing the signal, and if the signal
amplitude is comprised between 1 quanti-
zation step and 20–25% of the maximum
representable integer.

– The added quantization noise is close to the
theoretical value of 1/12, compared to the
intrinsic signal noise of σ2.

– For the product of the signal with itself
(autocorrelation), the nonlinearity is signif-
icant for any quantization with less than 9
bits. In these cases a linearization is always
necessary, but is relatively simple to imple-
ment.

The allowed amplitude for the signal to be
quantized is thus bounded on the lower side by
the allowable added quantization noise, and on
the upper side by the allowable nonlinearity.
For SKA, the added noise in the intermediate

quantizations must be lower than 0.1%, lead-
ing to a minimum signal level of 9 quantiza-
tion steps. For 8 bit representation and at least
60 dB of linearity, the maximum signal level
is 33 quantization steps, resulting in a dynamic
range of about 11 dB. For the final quantiza-
tion before the correlation, the allowable noise
is 0.5%. Assuming a 6 bit correlator, the quan-
tization correction can be avoided if the signal
RMS amplitude is in the range between 4.0 and
8.1 quantization steps.

Acknowledgements. This work is supported by the
Italian participation to the SKA project. It is also
based on previous work supported by FP7 grant
283393.

References

Bartolini, M., et al. 2017, MmSAI, 88, 172
Belli, C., et al. 2017, MmSAI, 88, 141
Chiarucci, S. and Comoretto, G. 2015,

Quantization noise and nonlinearities in the
correlation of two Gaussian signals, SKA-
CSP memo 0016

Comoretto, G., et al. 2006, A modular multi-
channel spectrometer – design study, INAF -
Osservatorio Astrofisico di Arcetri, Internal
Report, 4/2006

Comoretto, G., Melis, A. 2011, Exp. Astron.,
31, 59

Comoretto, G. 2012, A design method for
very large FIR filters, INAF - Osservatorio
Astrofisico di Arcetri, Internal Report,
3/2012

Comoretto, G. 2015, LFAA Tile Beamformer
structure INAF - Osservatorio Astrofisico di
Arcetri Internal, Report, 2/2015

Harris, F. J., Dick, C., and Rice, M. 2003,
IEEE Trans. on Microwave Theory and
Techniques, 51, 4

Manely, J., et al. 2010, SPEAD: Streaming
Protocol for Exchanging of Astronomical
Data, SKA-SA internal memo, 2010/10/07


	Introduction
	FPGA firmware development strategy
	The SKA Low station processing system
	The polyphase filterbank
	Station beamformer

	Digital baseband converter
	Quantization of radio signals

